Skip to content

Utils

ImageMosaic class

docclean.utils.ImageMosaic(image)

Image Mosaic class to make mosaic out of large images

Args:

image (np.ndarray): Numpy image array

Attributes:

input_shape: Input image size

extended_image: pads the images to the nearest powers of two.

get_powers_of_two method

ImageMosaic.get_powers_of_two(number)

Get nearest power of two

Args:

number (int): Input number

Returns:

int: Nearest power of two

normalise method

ImageMosaic.normalise(image)

Normalise the image between one and zero.

Args:

image (np.ndarray): Image array

Returns:

np.ndarray: Normalized array

extend_image method

ImageMosaic.extend_image()

Pad the image to neast power to two.

Returns:

np.ndarray: Numpy array of extended image

make_patches method

ImageMosaic.make_patches()

Makes patches of the image

Returns:

np.ndarray: Patches

combine_patches method

ImageMosaic.combine_patches(patches)

Combine patches back to image

Args: patches (np.ndarray): Patches array

Returns:

np.ndarray: Original Image

normed_to_uint8 function

docclean.utils.normed_to_uint8(image)

Scale normalised image to unit8 array

Args:

image (np.ndarray) : image array

Returns:

np.ndarray: uint8 scaled array

get_png_data function

docclean.utils.get_png_data(fname)

Read png data into tf tensors.

Args:

fname (str): file path

Returns:

tf.Tensor: image tensor

get_kaggle_paired_data function

docclean.utils.get_kaggle_paired_data(fname)

Get kaggle paired data

Args:

fname (str): File Name

Returns:

Tuple [tf.Tensor, tf.Tensor] : Dirty and Claen image


get_kaggle_data function

docclean.utils.get_kaggle_data(fname)

Read kaggle png data into tf tensors.

Args:

fname (str): file path

Returns:

tf.Tensor: image tensor

normalize function

docclean.utils.normalize(image)

Normalise the image by casting it to float and scaling between -1 and 1

Args:

image (tf.Tensor): imgae tensor

Returns:

tf.Tensor: Normalised image

books_crop_and_augment function

docclean.utils.books_crop_and_augment(image, size=(256, 256), num_boxes=1, rotate=True, flips=True)

Augments the book pages by zooming, cropping, rotating and fliiping

Args:

image (tf.Tensor) : image tensor

size (Tuple) : size to crop the image tensor

num_boxes (int): Number of patches from the image

rotate (bool): If random 90 degree rotations

flips (bool): If random LR and UD flips

Returns:

tf.Tensor: Augmented image

kaggle_paired_augment function

docclean.utils.kaggle_paired_augment(dirty, clean, size=(256, 256), rotate=True, flips=True)

Augments the book pages by zooming, cropping, rotating and fliiping

Args:

dirty (tf.Tensor) : image tensor

clean (tf.Tensor) : image tensor

size (Tuple) : size to crop the image tensor

rotate (bool): If random 90 degree rotations

flips (bool): If random LR and UD flips

Returns:

tf.Tensor: Augmented image